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The kinetic equation proposed in [1, 2] for describing the behavior of
a system of particles in a gas flow differs from the usual Boltzmann
equation with respect to the additional terms that take into account
random variations of the particle velocity under the influence of the
flow. As shown in {2], the collision operator and the Brownian-type
operator in the starting kinetic equation describe essentially different
simultaneous physical processes of change of state of the particle sys-
tem: equalization of the mean kinetic energy of the particles and
change of energy due tothe action of the viscous forces associated with
the suspending flow. Therefore the method of solving the kinetic equa-
tion used in [2], a direct generalization of the Chapman-Enskog
method of solving the kinetic equation it is necessary to investigate
method of solving the kinetic equation it is necessary to investigate
the relaxation processes in the system. Moreover, the relaxation of
systems of the fluidized-bed type to the continuum state is also of in-
dependent interest in connection with the analysis of fast processes

in the system, i.e., processes with a characteristic duration of the
order of the mean free time.

§1. The starting kinetic equation {1, 2] has the form:
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Here f(t, x, u) is the single-particle distribution func-
tion normalized by the mean number of particles per
unit volume, C(jf) is the collision operator [3], Uis
the potential energy of the external mass forces, qj
are the components of the mean carrier flow velocity
along the axes of the fixed Cartesian coordinate sys-
tem xj, and ¢ is some known function.

Moreover, we have
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Here v; is the particle volume, D is a constant, and
((Aa)z) is the mean-square fluctuation of the relative
volume occupied by the gas flow.

There is a natural relationship between Eq. (1.1),
the transport equations
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where m is the particle mass, and the equations for
determining the dynamic behavior of the gas flow
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Here Il is the gas-flow pressure and pg is its density.
In (1.1), (1.3), and (1.4), as everywhere in what
follows, the summation convention applies (from 1-3).

The quantities Qa and P aB in (1.3) are determined
in the usual way [3].

§2. We denote by L the characteristic macroscopic
scale of the system in question, by A the mean distance
between particles, and by w and ¢ the characteristic
macroscopic velocity of the mixture and the mean ran-
dom velocity of the particles, respectively.

Asis easily seen, Egs. (1.1), (1.3), and(1.4) permit
the introduction of the following characteristic time
scales: a) mean free time between two successive col-
lisions 7, = A/c b) mean particle viscous drag time
Ty = 1/&; c¢) convective time 73= L/w; d) characteris~
tic spatial nonuniformity diffusional smoothing time
4 = I} /Ae.

If we denote by I the characteristic scale of vis-
cous drag I = ¢/® and introduce the d1men51on1ess
parameters

@ =x/L p=1/L, M=wjc, (2.1

then for the ratios of the above-mentioned time scales
we have
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When M ~ 1 and o < 1 we always have 7y < 73 <
< 14. The ratio 7,/7{ may vary. We note that 7y/ry =
=1/A. When the suspending flow has low viscosity, we
have T{ « 1,. Moreover, if 14 < 7y, the system be-
haves like an ordinary gas and the suspending flow af-
fects only the smoothing of the spatial inhomogeneities
of the system. Therefore the most interesting case is
that in which 8 ~ 1 and 7; is comparable in magnitude
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with 73. Under these conditions the gas flow will have an
important influence on the dynamic behavior of the sys-~
tem, since the dimensions of the system are of the
same order as the scale of viscous drag.

In accordance with the method proposed in {4], we
seek the solution of (1.1), (1.3), and(1.4) in the form of
a series in powers of a small parameter
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the functions f{i) depending on the variables
FO = fO (Lo, ty, ty, .. .; u, a7x), (2.4)
where
t,=1%, 4 =al, i = a¥,.... {2.5)

Then the derivative of f with respect to time is
written in the form

Bj(l) \
Fn ate |

af a7 @ ( aj®
T ot

+a? ( HO W @ )

Btz a3ty £ (2.6)

We also assume that the spatial nonuniformity of
the system is relatively small and that the spatial de-
rivatives in (1.1),(1.3), and (1.4) are of the order of .
From the assumption 7, ~ 73 it follows that

O =ad. (2.7)

The quantities wis b, 0, A and B_,, will be certain
; ap o
functionals of f; therefore for each of these quantities
there will be an expansion analogous to (2.3):
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§3. Substituting (2.3) and (2.6) into (1.1), (1.3), as
the zero-order approximation we have
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The expansion of Eq. (1.4) will not be a part of
the zero-order approximation, if we note that for
the case of a gas carrier, as follows from the known
expressions [5, 6] for the function &, we have py/og ~

~ & ~ gy, where py is the density of the solid.

From (3.1) it quickly follows that as t,— « the func-
tion £(®) — 1, the Maxwellian distribution function.
In order for fy; to correspond to the initial distribu-
tion in the Chapman-Enskog method, we require that
w1° - Wi o) — n, o0) — 0 as tyg — . Moreover, it
is obvious that
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The equations of the first approximation are written
in the form

3/(1) ! 3/(0l . aj(ﬂ) |

at, T Tah T
[ @, © oy 8U ] 5@
+LA (g; —w; )*3—%']—3;—

=2 [A(O) (@i —w; ) {7 + Bi]go)a_i“_’)_} +

éui 0uJ

+C (FV) 0 (1Y), (3.3)

@), (0
3l nl® P w,
0ty 7% 81‘1:

=0, (3.4)

©
awt‘

AL
(0) - L
-

aty Wa

[{0)
) dw, ) .
dx

EI AL
i {A“’) (G —wy®) — gg] mn® |
1

oz,

(3.5)

86 | 38 a6
a, U dk, % 3m,

2 {aQi“’) p

_ © duw®
T 320 | o z;

i 5 >
+ 2 mBO| ¥ — WO 2400, (3.6)
Inexactly the same way for the carrier flow, we have
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From the first of relations (3.7) it follows that
qu° /81;0 = 0. In order to eliminate the secular terms
in (3.4), we require that
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Then from the condition that n{0) — n as t, — =, we
obtain o't = o, Similarly, eliminating the secular
terms from (3.5) and (3.6), we have

1) {
oty axj dz; !
0 o [0, ) {1
B 50 | Tam T P pdy) J (3.9)

Equations (3.2) determine the transitional behavior
of wi(i)and 6t if the transitional behavior of £0) i5
known. And, finally, the asymptotic behavior of the
function f\V is determined by the equation
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which coincides with the second approximation in the
Chapman-Enskog method. The asymptotic values of
Q(O) and P(? give the expressions obtained in [2]. Con-
tmulng the expansion, we can obtain the next terms of
the series and the equations for determining the tran-
sitional behavior of Q{1 and P(ii. . The equations of the
next approximation have the form
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Eliminating the secular terms in (3.12)—(3.14), as
tp — «© we obtain
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if, as before, we require that q(ii) —~ Oasty— .

§4. The qualitative characteristics of the relaxation processes in
the system can be studied for a relaxation model of the collision in-
tegral in exactly the same way as in {4]. Only the effects associated
with the additional terms in equation (1.1) are of special interest,
and in order to use the results of [4] we denote by f, the solution of
(1.1} at A = 0 and investigate the behavior of the function f — f,.
Adding (8.16) and the expressions that follow from (3.4)-(3.6) after
elimination of the secular terms, we find the equations of hydrodynam-
ics of the system previously obtained in [2].

After elimination of the secular terms as ty— = Eq. (3.11) leads
to the third-approximation equation in the Chapman-Enskog method
for starting equation (1.1).

Thus, the procedure used to solve the kinetic equation (1.8} in [2]
leads to the asymptotic solution of that equation as ty—> =,

For the relaxation model of the collision integral in the simplest
case, following [4], we assume
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Using the above-mentioned expansion procedure for f
f=1.

Thus, the relaxation processes for Eq. (1.1) in the zero-order ap-
proximation coincide with the relaxation processes in the ordinary gas.
As may be seen from (3.9) and the corresponding expansion for
F(1), the trapsitional behavior of w} 1, 01, and 641 wil1 be the same

as that of wj, ) 6(1) n{h),
We denote by [ the difference f(l) - f(l) Then, for ¢ we have

= f., we find
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Now let L be an operator acting on the function f(o) on the right
side of (4.2). The solution for ¢ can now be written in the form
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As may be seen from (4.3), the relaxational behavior of ¢ is
characterized by the number of the exponential approximation of ¢
to its asymptotic value.

Using ¢ and the results of [4], we can determine the transitional
behavior of Qfxl) and P&l . Then structure of the corresponding expres~
sions is rather clumsy and accordingly they have been omitted.
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